IOPSClence iopscience.iop.org

Home Search Collections Journals About Contactus My IOPscience

Determinant of the Laplacian on a non-compact three-dimensional hyperbolic manifold with

finite volume

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1997 J. Phys. A: Math. Gen. 30 3543
(http://iopscience.iop.org/0305-4470/30/10/028)

View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.71
The article was downloaded on 02/06/2010 at 04:19

Please note that terms and conditions apply.



http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/30/10
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience

J. Phys. A: Math. Ger30 (1997) 3543-3552. Printed in the UK PIl: S0305-4470(97)78855-3

Determinant of the Laplacian on a non-compact
three-dimensional hyperbolic manifold with finite volume

Andrei A Bytsenkg§ Guido Cognola|| and Sergio Zerbiriff

1 State Technical University, St Petersburg 195251, Russia
1 Dipartimento di Fisica, Universitdi Trento, and Istituto Nazionale di Fisica Nucleare, Gruppo
Collegato di Trento, ltaly

Received 21 October 1996, in final form 28 January 1997

Abstract. The functional determinant of Laplace-type operators on a three-dimensional non-
compact hyperbolic manifold with invariant fundamental domain of finite volume is expressed
via the Selberg zeta function related to the Picard gréLg2, Z + i7Z)/{=+ 1d}.

1. Introduction

It is known that within the one-loop approximation, the Euclidean partition function in
guantum field theory may be expressed as functional determinants associated with elliptic
second order differential operators. Therefore, in recent years there have been many
investigations into functional determinants on topologically non-trivial manifolds. Most of
them have been concerned with Riemann flat or spherical spaces (see, for example, [1, 2] and
references therein) or orbifold factors of spheres [3, 4]. The case of compact hyperbolic
manifolds has also been considered (see for example [5, 6, 7, 8, 9, 10, 11, 2, 12, 13]).
In this case one is dealing with two-dimensiondf/I" and three-dimensional3/ T
compact hyperbolic manifolds#” being the Lobachevsky space afida discrete group

of isometries acting orH" and containing loxodromic, hyperbolic and elliptic elements
(see [14, 15, 16, 17, 12]). Such manifolds are relevant in string theory and in cosmological
scenarios.

For non-compact Riemannian surfaces of finite area, the functional determinant of
Laplace operator has been computed in [18, 19]. Due to the potential relevafice R)-
dimensional quantum field theoretical models (Chern—Simons models), in this paper we
extend the analysis to the three-dimensional case, considering a Laplace-type operator acting
on functions in a non-compact, three-dimensional manifgiy I'. In our example, the
discrete group of isometry can be chosen in the f6th 2, Z + iZ)/{% Id}, a subgroup of
the standard Picard group, Id being the identity elemenf @nd it is associated with a
non-compact manifold having an invariant fundamental domain of finite volume.

Making use of the Selberg trace formula, we shall investigate the asymptotic expansion
of the heat kernel trace TregpzL), L being a Laplace-like operator. Recall that one can
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define the spectral-function ¢ (s|L) associated with the operatarby means of the Mellin
transform

1
T(s)

For Res > g it is a well-defined analytic function and it can be continued analytically to a
meromorphic function on the whole complex plane.

We shall find that the presence of parabolic elementE ieads to the appearance of
a logarithmic factor in the small asymptotic heat kernel expansion. This fact has been
observed in [18, 19] for non-compact Riemannian surfaces of finite area. In this case the
meromorphic continuation of the-function has been shown to be regularsat 0, thus
the determinant of the Laplacian has been evaluated by means of the starfdaation
regularization [20, 21]. In the three-dimensional case we shall showthat) is still a
meromorphic function regular at= 0, allowing the use of -function regularization.

The contents of the paper are as follows. In section 2 we summarize some properties of
the combined contributions to the Selberg trace formula needed in the paper. In section 3
the heat kernel trace and tigefunction for a Laplace type operator are studied by making
use of the trace formula. In section 4 the functional determinat is evaluated by means of
the quadrature method. Finally we end with some conclusions in section 5.

C(s|L) = /O dr * 1 Tre't. (1.1)

2. Fundamental domain of the discrete groupSL(2,Z +iZ)/{z£ld} and the Selberg
trace formula associated with the cusp form

Here we summarize the geometry and local isometry related to a simple three-dimensional
complex Lie group. We shall consider discrete subgrbup SL(2, C)/{% Id}, where Id is

the 2x 2 identity matrix of thel". The groupl’ acts discontinuously at the poiate C, C

being the extended complex plane. We recall that a transformatigrid, y € T, with

_az+b
V= o xd

is called elliptic if (Tr y)? satisfies 0< (Try)? < 4, hyperbolic if (Try)? > 4, parabolic
if (Try)2 = 4 and loxodromic if (Try)?2 € C\[0,4]. The classification of these
transformations can also be based on the properties of their fixed points, the number of
which is 1 for the parabolic transformations and 2 for all other cases.

The elementy € SL(2,C) acts onp = (y, w) € H®, w = x1 + ix» by means of the
following linear-fractional transformation:

( y (aw+b)(cw+d)+acy2>
yp = :

ad —bc =1 (Try)? = (a + d)? a,b,c,d e C (2.1)

) 2.2
lcw + d|2 + |c|?y? lcw + d|2 + |c|2y? (2:2)
The isometric circle of a transformation € SL(2, C)/{+£ Id} for which oo is not a fixed
point is defined to be the circle

I(y) ={z: lyzI=1 or Iy)={z: lz+d/c|=lc|™"} c#0. (2.3)

A transformationy carries its isometric circlé (y) into I(y~1).

The isometric fundamental domain of a Fuchsian group (Kleinian group without
loxodromic elements) has the following structure: it is bounded by arcs of circles orthogonal
to the invariant circle and consists either of two symmetric components or of a single
component, while the mappings connecting its equivalent sides generate the whole group.
In many cases, it is more convenient to deal with other fundamental regions. For example,
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the so-called normal fundamental Dirichlet polygons are often used for Fuchsian groups and
we shall follow this approach here.

Now we consider a discrete subgroup of a special kind. Get PSL(2,C) =
SL(2,C)/{xId}, then forT" C G, one can choos€& in the form SL(2, Z + iZ)/{£ d},
where Z is the ring of integer numbers. The grodp has, within a conjugation, one
maximal parabolic subgrouB., (¢ = 0). Thus, the fundamental domain relatedltdas
one parabolic vertex and can be taken in the form [22, 23]

F(F):{(y,w):xf+x§+y2>1, —%<x2<x1<%}. (2.4)

Remark. Let a free Abelian group of isometries be generated by the two parabolic mappings
g1m)=z+1 g2(z) =z +1i (2.5)

then, if we identify the faces of the polyhedron, equation (2.4), we obtain a manifold
M(T") that is homeomorphic to a punctured torss® $* ® [-3, ) = U. ® S*, where
U.={z: 0<|z] < %} is a punctured cylinder. It is turned into a hyperbolic manifold by
removing the boundary M (I"), which is homeomorphic to the torug ® S*.

Now we are ready to start discussing the Selberg trace formula, which can be constructed
as an expansion in eigenfunctions of the automorphic Laplacian. To begin with, we assume
that the groud” has a cusp ato (¢ = 0), each element of the stabilizEx, is a translation.
Computing the conjugacy cla$g};, y € I's with y different from the identity, one easily
obtains the following proposition.

Proposition 1.Let

1 +i
y = (o 1 1 ”2> ni,ny € 7. (2.6)
The conjugacy class with representativeconsists in element andy 1, where
-1 __ 1 —ny — in2
y = (O 1 . 2.7)

The remaining conjugacy classes have the representativieg iof the form

(%) mm(b) () we(0)

(2.8)
The centralizers related to these representations read
FV=<(1) ’"“Llimz) ma, my € 7
r=rn= (é 2)(6 —11')’(—01 é)(? 5)}
r2=r»= (é 2)(6 E,)(IZ E)|)<_2|1 i)} 29)
e (506 ) (D) (3 %)
e=re= (396 Gl %) (A )
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Let us consider an arbitrary integral operator with kerb@l, z’). Invariance of the
operator is equivalent to fulfillment of the conditiéty z, yz') = k(z, z’) for anyz, z’ € H®
andy € PSL(2,C). So the kernel of the invariant operator is a function of the geodesic
distance between andz’. It is convenient to replace such a distance with the fundamental
invariant of a pair of pointsi(z, z’) = |z — z/|?/yy’, thusk(z, z') = k(u(z,7')) . Leta;
be the isolated eigenvalues of the self-adjoint extension of the Laplace operator and let us
introduce a suitable analytic functionr) and rj2 = A; — 1. It can be shown thai(r) is
related to the quantit¥(u(z, yz)) by means of the Selberg transform. Let us denote by
g(u) the Fourier transform ofi(r), namely

g() = % /: e ""h(r) dr. (2.10)

For one parabolic vertex let us introduce a subdonmfinof the fundamental region
F (') by means
Fy={ze FD),z={y,z}|y <Y} (2.11)
whereY is a sufficiently large positive number.

Lemma 1.Supposéi(r) to be an even analytic function in the sttipnr| < 1+ ¢ (¢ > 0)
andh(r) = O(1 + |r|»~2. Then forN = 3 the following formula holds [22]:

1 oo
Zh(r,)_ lim {/ > ku(z. yz) du(z)——/ h(r) |E(z,1+ir)|2du(z)dr}
Fy 0 FY

{vir

(2.12)

where gi(z) = y~3dydx;dx, is the invariant measure al® and E(z, s) is the Eisenstein—
Maass series associated with one cusp, namely

E@s)= Y (2 x2(z) = Imz. (2.13)

y€('/T)
The series (2.13) converges absolutely forsRe 1 and uniformly inz on compact

subset ofH3. All poles of E(z, s) are contained in the union of the region Re % and
the mterval[ ] and those contained in such an interval are simple. Furthermore, for
eachs, the seriesE(z, s) is a real analytic function o/, automorphic relative to the
groupT" and satisfies the eigenvalues equation

AE(z,s) =s(s —DE(z,s) (2.14)

A being the Laplace operator. The asymptotic expansion of the second integral in (2.12)
can be found with the help of Maass—Selberg relation [22]. ¥es oo one has

7f h(r) IE(z 1+ir)?du(z) dr

(V) 1 S’ (1+ir)
(O)InY+—S(1)—E/_ h(r )ﬁd 4+ O(1). (2.15)

The functionS(s) (in the general case it is th&matrix) is given by a generalized Dirichlet
series, convergent for Re> 1,

_1
S(s) = M Z Z e ™ 10
L) Zoedaz

where the sums are taken over all pairs/ of the matrix (¥ ) C I'w\I'/Tw. Also, the
poles of the meromorphic functiofi(s) are contained in the region Re< % and in the
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interval [% 1]. The functionsE (z, s) and S(s) can be extented analytically on the whole
complexs-plane, where they satisfy the functional equations
Ss)SA—1s)=1Id S(s) = S(s) E(z,5) =S(s)E(z,1—3). (2.17)

It should be noted that the terms of the trace formula associated with the elements
and y ! coincide. Then the contribution to the first integral in (2.12), which comes from
all y type conjugacy classey (€ I'”), given in proposition 1, fo¥ — oo can be written
as follows:

/ > k(u(z, y2) du ()
Fr y)r

= (nY +C)g©) + h(TO) - % f h(r) ¥ (L + ir) dr +O() (2.18)

where ¢ (s) is the logarithmic derivative of the Euldr-function andC is a computable
constant which reads

C=3In2—3y+Co

' 1 N ()12 |%-(m+l)|
Co= lim M;[@ |72 — 27 In w} (2.19)

In the latter equatiory is the Euler—Mascheroni constant af¢l” is a sequence of two-
dimensional vectors such thaty| + |ny| = m, yz = {y, w + £}, &€ # 0, || > |g0m)
[22].

For the derivation of the Selberg trace formula, one has to consider the contributions
coming from the identity and the non-parabolic element§ jrthe normalized Eisenstein—
Maass series, equation (2.13), andjallype conjugacy classes, equation (2.18). The final
result we state should be considered as an explicit addition to lemma 1 [22].

Theorem 1For the special discrete groupl (2,7 + iZ)/{£1d} and h(r) satisfying the
conditions of lemma 1, we have the Selberg trace formula

1 [ S'(L+ir) h(0)
JZh(rj)— > /k(u(z,yz))du(z)—ﬁf MO Sy &4 SO

{rir.y#ld, -
y=non-parabolic

00 2 1 00
= V(F)/O # h(r) dr 4+ Cg(0) + %O) - E/ h(r) ¥ (1+ 3ir) dr.
(2.20)

The first term on the RHS of (2.20) is the contribution of the identity element, Whilg)
is the (finite) volume of the fundamental domaihwith respect to the measure.d

3. The heat kernel and the¢-function

As discussed in the introduction, the determinant of an elliptic differential operator requires
a regularization. It is convenient to introduce the operdtpr= —A + 62 — 1, with §

such thats? > 1. One of the most used regularization is thdunction regularization

[20, 24, 21]. By this one has

IndetLs = —é'/ (O|Ls) (31)
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where ¢’ is the derivative with respect to of the ¢-function. In the standard cases, the
¢-function ats = 0 is well defined, and so by means of the latter formula one obtains a
finite result.

We recall that the meromorphic structure of the analytically contingidnction, as
well as the ultraviolet divergences of the one-loop effective action, can be related to the
asymptotic properties of the heat-kernel trace. For the rank-1 symmetric &p&de the
trace of the operator e{qa(tLg)l may be computed by using theorem 1 (equation (2.20))
with the choiceh(r) = expg—1(r* + §)] (we use units in which the curvatuke= R/6 of
H?3 is equal to—1). We have

efzazeﬂﬁ/m eftéz 52
gu) = A g0 = N7 h(0) =e"". (3.2)

In this and the following sections we shall consider additive terms of ¢tHenction
associated with identity and parabolic elements of the gioumly (the heat kernel and
¢-function analysis for co-compact discrete groDiphas been carried out in [2, 12], for

example).
As a result
iy _ o2 | V) ¢ 1 1/ 1 atr?
Tret=et [(47”)3/2 Y a2t 4T a4 7001#(14- e dry. (3.3)

The asymptotic behaviour of the last integral for- 0 can be easily evaluated. In fact, by
making an integration by parts, using (see [25])

INT(z) =zInz—z—1In /% + f@w (3.4)
with
1 k > 1
=~ 3.5
10 = L G DE+2 &t o (59
and performing elementary integration we have

Int V(F) C+n2+1y ¢ > .,
&/HJr (4r1)3/2 + (401)1/2 _;/_we fGindr|. (3.6)

The functionf (z) has an aymptotic expansion for largéin terms of the Bernoulli numbers
By given by [25]

~ _— = 3.7
F@ k; 2k (2k — 1)z%-1 S
The contribution for short comes from these asymptotics. Thus we have
Proposition 2. The asymptotic behaviour of the heat kernel for 0 reads

Int > >
Tre'Ls ~ g1 [8 - + Z Knt”‘3/2} = Z(Ar + P.Inn" 32 (3.8)
N n=0

. _ 182
Tre'b =e® |:

r=0
where the firstk, coefficients are given by
V(F) C+In2+ 1y 1
and
r B._ 82n 62(r—1)
A, = ) —— Pp=0 Po=(-1"*t— 3.10
;( U ° W (3-10)
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It should be noted that, besides the usual terms one has for the heat kernel in three-
dimensions, there exist terms with logarithmic factors due to the presence of parabolic
elements in. These terms are absent for the co-compact gidupompact hyperbolic
manifolds). Furthermore, the contribution of the hyperbolic elements is exponentially small
in t. Thus, the result of proposition 2 still holds true.

Let us analyse the consequences of the presence of logarithmic terms in the latter
expansion. We recall that thiiefunction associated with the elliptic operatby is given by

1
[ (s)
valid for Res > g In order to obtain the meromorphic structure of the function (3.11), we
split the integration range in the two intervals 1) and [1 co), in this way obtaining two

integrals. The latter is regular for — 0, while the behaviour of the former one can be
estimated by using the asymptotics, equation (3.8). Thus we have

C(s|Ls) = / dr 1 Tre'bs (3.11)
0

Proposition 3.The meromorphic structure of thefunction reads

1 A P, J(s)
c(s|Ls)—F(S)Z[ . (s+r—§)2}+r(s) (3.12)

r=0 S+r_é

where J (s) is an analytic function.

From this, it follows that the analytic continuation offunction is regular ak = 0.
The presence of double poles, caused by the logarithmic terms, must also be noted.

We conclude this section by computing the asymptotic behaviour for very danf¢he
derivative of the-function evaluated at zero. To this end, the asymptotic behaviour for
smallt [7] again gives

Proposition 4.

V(F)§® 1 1 1 1
"(O|Lg) = “5Ins —§ “In2+ 2 o). 3.13
¢'(OILs) 6 T oM <C+2n +2)+ <3) (3.13)

4. The functional determinant

In this section, making use of the trace formula, we shall compute the functional determinant
of a Laplace-type operator oH3/I". We briefly explain the method which is based on
¢-function regularization and an evaluation by quadratures with an appropriate choice of
the functioni(r) appearing in the trace formula [6, 7, 18]. Theunction, for Res > g

can be rewritten in the form

(GIL) =Y ps (he +62=1)" =) (i +6*-1)" +f (A+82-1)" p.da
o 0

J

4.1)

where the sum ovef runs over the discrete spectruim,being the eingenvalues and we put
pi = 1 here. For the continuous spectrum,is proportional to the logarithmic derivative
of the S-matrix S(s). One has

¢'(s|Ls) = — Zpg (ko +82=1) " In(hy + 82— 1). (4.2)
From the latter equation one obtains

d 1 d , —s—2
d8<28d§§ (lew):z‘S;pa(%HZ—l) +0(s). (4.3)
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A standard Tauberian argument and equation (3.8) gives a Weyl estimate fos |argmely
(As + 82— 1)1 ~ 0?3 As a consequence, in the limit— 0, the RHS of (4.3) is finite.
This works for dimension® = 2 as well as forD = 3. In higher dimensions it is necessary
to take further derivatives with respectdd7].

On the other hand, we may rewrite equation (2.20) (nérel = A andy is the identity
or a parabolic element i) as

_ _ ' _i e S'(L+ir) hs(0)
G(&-Epaha(ra)—;ha(x,) = /mha(r) s a s @

G (8) denoting the ‘geometrical’ part

G(S)—V(F)/Oo " sy dr 4 Ca0 1 O 1f°°h(> 1+lind.  (45)
= Oﬁarr 8 i E_oo,srl/f 31r) dr. .

Let us choose the functiohs as

1 1 1 1

h = - 0)=——— 4.6
s(r) 212 2t 8s(0) 25 24 (4.6)

with a a non-vanishing constant. Taking the derivative with respeétue have

25 Zpa (ho +82— 1)‘2 = —d%G(S). 4.7

Making the comparison between equation (4.3) and (4.7), integrating twice in the variable
8 and taking the limits — 0, we finally obtain

¢'(O|Ls) = —zf 8G(8) dS + c182 + c2 (4.8)

where the constants; and ¢, can be determined from the asymptotics for lasgeThe
primitive related to the geometrical part can be easily computed by making use of the
Selberg trace formula with the choice (4.6). One has

V(P c(1 1\, 1(1 1
G(‘”—Um(‘3‘“)+z<3‘a>+4(32‘az)

1 [w(1+ 8/2) w<1+a/2>} . (4.9)
4 ) a

As a consequence

F)8® 1
(O|Ls) = 14 ]T)S +[c1 4 Q(@)]82 — €8 — > In§+InTC(1+ %5) +c (4.10)
where

1 _V(F)a C Yv(14+a/2)
Q(a) = 122 ym on " aa (4.12)

The inclusion of the contribution related to the hyperbolic elements in (4.10) is almost
straightforward and can be found in [2, 12]. It is additive and reads simp@y1Aa-38), Z(s)

being the Selberg zeta-function, which may defined by means of its logarithmic derivative;
namely for Re > 1 one has [16, 12]

Z'() _ o x(P0)H
Z(S) {P} k=1 S3(ka ly)

where {P} is a set of primitive closed geodesicB(y) being the holonomy element by
parallel traslation around thg € T" element of the conjugacy class, the corresponding

exp(—(s — Dkl,) (4.12)
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geodesic length ansz(k; ) a known function of the conjugacy class. In the lasgémit,
In Z(1+ §) is vanishing and one has
V(F)83

¢"(OILs) =~ 6t

+[c1+ Q@))% + }alna -8 (C+1In2+ l) —i-}lnn + ¢z
2 2 2 2
(4.13)
which agrees with (3.13) if
c1=—0(a) c2=—3Inm. (4.14)
Summarizing we have proved the following theorem.
Theorem 2.0ne has the identity

s ( V(F)83
1o EXP{—
r+ 15 6

detL; = + c5) Z(1+56). (4.15)

5. Conclusions

In this paper we have computed the functional determinant of a Laplace-like operator on a
non-compact three-dimensional hyperbolic manifold with finite volume fundamental domain
by the method of quadratures. In addition, the contributions to the heat kernel agd the
function associated with the identity and parabolic elements of the isometry group have
been analysed. The constant appearing in the quadrature process has been determined by
means of the asymptotic behaviour of the functional determinant, which may be achived
again making use of the trace formula for the heat kernel. This method is particular useful
in the evaluation of the functional determinants, because it allows one to avoid the problem
of finding the analytical continuation of the zeta-function, which may present computational
difficulties. On the other hand, the method requires the existence of a trace formula and its
validity can be extended to more general cases (see, for example, [26, 27, 28]).
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