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Abstract. The functional determinant of Laplace-type operators on a three-dimensional non-
compact hyperbolic manifold with invariant fundamental domain of finite volume is expressed
via the Selberg zeta function related to the Picard groupSL(2,Z+ iZ)/{± Id}.

1. Introduction

It is known that within the one-loop approximation, the Euclidean partition function in
quantum field theory may be expressed as functional determinants associated with elliptic
second order differential operators. Therefore, in recent years there have been many
investigations into functional determinants on topologically non-trivial manifolds. Most of
them have been concerned with Riemann flat or spherical spaces (see, for example, [1, 2] and
references therein) or orbifold factors of spheres [3, 4]. The case of compact hyperbolic
manifolds has also been considered (see for example [5, 6, 7, 8, 9, 10, 11, 2, 12, 13]).
In this case one is dealing with two-dimensionalH 2/0 and three-dimensionalH 3/0

compact hyperbolic manifolds,HN being the Lobachevsky space and0 a discrete group
of isometries acting onHN and containing loxodromic, hyperbolic and elliptic elements
(see [14, 15, 16, 17, 12]). Such manifolds are relevant in string theory and in cosmological
scenarios.

For non-compact Riemannian surfaces of finite area, the functional determinant of
Laplace operator has been computed in [18, 19]. Due to the potential relevance in(1+ 2)-
dimensional quantum field theoretical models (Chern–Simons models), in this paper we
extend the analysis to the three-dimensional case, considering a Laplace-type operator acting
on functions in a non-compact, three-dimensional manifoldH 3/0. In our example, the
discrete group of isometry can be chosen in the formSL(2,Z+ iZ)/{± Id}, a subgroup of
the standard Picard group, Id being the identity element of0 and it is associated with a
non-compact manifold having an invariant fundamental domain of finite volume.

Making use of the Selberg trace formula, we shall investigate the asymptotic expansion
of the heat kernel trace Tr exp(−tL), L being a Laplace-like operator. Recall that one can
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define the spectralζ -functionζ(s|L) associated with the operatorL by means of the Mellin
transform

ζ(s|L) = 1

0(s)

∫ ∞
0

dt t s−1 Tr e−tL. (1.1)

For Res > 3
2 it is a well-defined analytic function and it can be continued analytically to a

meromorphic function on the whole complex plane.
We shall find that the presence of parabolic elements in0 leads to the appearance of

a logarithmic factor in the smallt asymptotic heat kernel expansion. This fact has been
observed in [18, 19] for non-compact Riemannian surfaces of finite area. In this case the
meromorphic continuation of theζ -function has been shown to be regular ats = 0, thus
the determinant of the Laplacian has been evaluated by means of the standardζ -function
regularization [20, 21]. In the three-dimensional case we shall show thatζ(s|L) is still a
meromorphic function regular ats = 0, allowing the use ofζ -function regularization.

The contents of the paper are as follows. In section 2 we summarize some properties of
the combined contributions to the Selberg trace formula needed in the paper. In section 3
the heat kernel trace and theζ -function for a Laplace type operator are studied by making
use of the trace formula. In section 4 the functional determinat is evaluated by means of
the quadrature method. Finally we end with some conclusions in section 5.

2. Fundamental domain of the discrete groupSL(2,Z+ iZ)/{±Id } and the Selberg
trace formula associated with the cusp form

Here we summarize the geometry and local isometry related to a simple three-dimensional
complex Lie group. We shall consider discrete subgroup0 ⊂ SL(2,C)/{± Id}, where Id is
the 2× 2 identity matrix of the0. The group0 acts discontinuously at the pointz ∈ C, C
being the extended complex plane. We recall that a transformationγ 6= Id, γ ∈ 0, with

γ z = az + b
cz + d ad − bc = 1 (Tr γ )2 = (a + d)2 a, b, c, d ∈ C (2.1)

is called elliptic if (Tr γ )2 satisfies 06 (Tr γ )2 < 4, hyperbolic if (Tr γ )2 > 4, parabolic
if (Tr γ )2 = 4 and loxodromic if (Tr γ )2 ∈ C\ [0, 4]. The classification of these
transformations can also be based on the properties of their fixed points, the number of
which is 1 for the parabolic transformations and 2 for all other cases.

The elementγ ∈ SL(2,C) acts onp = (y,w) ∈ H 3, w = x1 + ix2 by means of the
following linear-fractional transformation:

γp =
(

y

|cw + d|2+ |c|2y2
,
(aw + b)(c w + d)+ acy2

|cw + d|2+ |c|2y2

)
. (2.2)

The isometric circle of a transformationγ ∈ SL(2,C)/{± Id} for which∞ is not a fixed
point is defined to be the circle

I (γ ) = {z : |γ z| = 1} or I (γ ) = {z : |z + d/c| = |c|−1} c 6= 0. (2.3)

A transformationγ carries its isometric circleI (γ ) into I (γ−1).
The isometric fundamental domain of a Fuchsian group (Kleinian group without

loxodromic elements) has the following structure: it is bounded by arcs of circles orthogonal
to the invariant circle and consists either of two symmetric components or of a single
component, while the mappings connecting its equivalent sides generate the whole group.
In many cases, it is more convenient to deal with other fundamental regions. For example,
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the so-called normal fundamental Dirichlet polygons are often used for Fuchsian groups and
we shall follow this approach here.

Now we consider a discrete subgroup of a special kind. LetG = PSL(2,C) =
SL(2,C)/{± Id}, then for0 ⊂ G, one can choose0 in the form SL(2,Z + iZ)/{± Id},
where Z is the ring of integer numbers. The group0 has, within a conjugation, one
maximal parabolic subgroup0∞ (c = 0). Thus, the fundamental domain related to0 has
one parabolic vertex and can be taken in the form [22, 23]

F(0) = {(y,w) : x2
1 + x2

2 + y2 > 1, − 1
2 < x2 < x1 <

1
2

}
. (2.4)

Remark. Let a free Abelian group of isometries be generated by the two parabolic mappings

g1(z) = z + 1 g2(z) = z + i (2.5)

then, if we identify the faces of the polyhedron, equation (2.4), we obtain a manifold
M(0) that is homeomorphic to a punctured torusS1 ⊗ S1 ⊗ [− 1

2,
1
2) = Uc ⊗ S1, where

Uc = {z : 0< |z| 6 1
2} is a punctured cylinder. It is turned into a hyperbolic manifold by

removing the boundary∂M(0), which is homeomorphic to the torusS1⊗ S1.

Now we are ready to start discussing the Selberg trace formula, which can be constructed
as an expansion in eigenfunctions of the automorphic Laplacian. To begin with, we assume
that the group0 has a cusp at∞ (c = 0), each element of the stabilizer0∞ is a translation.
Computing the conjugacy class{γ }0, γ ∈ 0∞ with γ different from the identity, one easily
obtains the following proposition.

Proposition 1.Let

γ =
(

1 n1+ in2

0 1

)
n1, n2 ∈ Z. (2.6)

The conjugacy class with representativeγ consists in elementγ andγ−1, where

γ−1 =
(

1 −n1− in2

0 1

)
. (2.7)

The remaining conjugacy classes have the representatives in0∞ of the form

γ1 =
(

i 0
0 −i

)
γ2 =

(
i 1
0 −i

)
γ3 =

(
i −i
0 −i

)
γ4 =

(
i 1− i
0 −i

)
.

(2.8)

The centralizers related to these representations read

0γ =
(

1 m1+ im2

0 1

)
m1, m2 ∈ Z

01 = 0γ1 =
{(

1 0
0 1

)
,

(
i 1
0 −i

)
,

(
0 1
−1 0

)
,

(
0 i

i 0

)}
02 = 0γ2 =

{(
1 0
0 1

)
,

(
i 1
0 −i

)
,

(
i 0
2 −i

)
,

(−1 i
2i 1

)}
03 = 0γ3 =

{(
1 0
0 1

)
,

(
i −i
0 −i

)
,

(
1 −1
2 −1

)
,

(
i 0

2i −i

)}
04 = 0γ4 =

{(
1 0
0 1

)
,

(
i 1− i
0 −i

)
,

(
i 0

1+ i −i

)
,

(
1 −1− i

1− i −1

)}
.

(2.9)



3546 A A Bytsenko et al

Let us consider an arbitrary integral operator with kernelk(z, z′). Invariance of the
operator is equivalent to fulfillment of the conditionk(γ z, γ z′) = k(z, z′) for anyz, z′ ∈ H 3

andγ ∈ PSL(2,C). So the kernel of the invariant operator is a function of the geodesic
distance betweenz andz′. It is convenient to replace such a distance with the fundamental
invariant of a pair of pointsu(z, z′) = |z − z′|2/yy ′, thus k(z, z′) = k(u(z, z′)) . Let λj
be the isolated eigenvalues of the self-adjoint extension of the Laplace operator and let us
introduce a suitable analytic functionh(r) and r2

j = λj − 1. It can be shown thath(r) is
related to the quantityk(u(z, γ z)) by means of the Selberg transform. Let us denote by
g(u) the Fourier transform ofh(r), namely

g(u) = 1

2π

∫ ∞
−∞

e−iruh(r) dr. (2.10)

For one parabolic vertex let us introduce a subdomainFY of the fundamental region
F(0) by means

FY = {z ∈ F(0), z = {y,x} |y 6 Y } (2.11)

whereY is a sufficiently large positive number.

Lemma 1.Supposeh(r) to be an even analytic function in the strip| Im r| < 1+ ε (ε > 0)
andh(r) = O(1+ |r|2)−2. Then forN = 3 the following formula holds [22]:∑
j

h(rj ) = lim
Y→∞

{∫
FY

∑
{γ }0

k(u(z, γ z)) dµ(z)− 1

2π

∫ ∞
0
h(r)

∫
FY

|E(z, 1+ ir)|2 dµ(z) dr

}
(2.12)

where dµ(z) = y−3dydx1dx2 is the invariant measure onH 3 andE(z, s) is the Eisenstein–
Maass series associated with one cusp, namely

E(z, s) =
∑

γ∈(0/0∞)
ys(γ z) x2(z) = Im z. (2.13)

The series (2.13) converges absolutely for Res > 1 and uniformly inz on compact
subset ofH 3. All poles of E(z, s) are contained in the union of the region Res < 1

2 and
the interval

[
1
2, 1

]
and those contained in such an interval are simple. Furthermore, for

eachs, the seriesE(z, s) is a real analytic function onH 3, automorphic relative to the
group0 and satisfies the eigenvalues equation

1E(z, s) = s(s − 1)E(z, s) (2.14)

1 being the Laplace operator. The asymptotic expansion of the second integral in (2.12)
can be found with the help of Maass–Selberg relation [22]. ForY →∞ one has

1

2π

∫ ∞
0
h(r)

∫
FY

|E(z, 1+ ir)|2 dµ(z) dr

= g(0) lnY + h(0)
4
S(1)− 1

4π

∫ ∞
−∞

h(r)
S ′(1+ ir)

S(1+ ir)
dr +O(1). (2.15)

The functionS(s) (in the general case it is theS-matrix) is given by a generalized Dirichlet
series, convergent for Res > 1,

S(s) =
√
π0(s − 1

2)

0(s)

∑
c 6=0

∑
06d<|c|

|c|−2s (2.16)

where the sums are taken over all pairsc, d of the matrix
( ∗ ∗
c d

) ⊂ 0∞\0/0∞. Also, the
poles of the meromorphic functionS(s) are contained in the region Res < 1

2 and in the
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interval
[

1
2, 1

]
. The functionsE(z, s) andS(s) can be extented analytically on the whole

complexs-plane, where they satisfy the functional equations

S(s)S(1− s) = Id S(s) = S(s) E(z, s) = S(s)E(z, 1− s). (2.17)

It should be noted that the terms of the trace formula associated with the elementsγ

andγ−1 coincide. Then the contribution to the first integral in (2.12), which comes from
all γ type conjugacy classes (γ ∈ 0γ ), given in proposition 1, forY →∞ can be written
as follows:∫
FY

∑
{γ }0∞

k(u(z, γ z)) dµ(z)

= (lnY + C) g(0)+ h(0)
4
− 1

4π

∫ ∞
−∞

h(r)ψ(1+ 1
2ir) dr +O(1) (2.18)

whereψ(s) is the logarithmic derivative of the Euler0-function andC is a computable
constant which reads

C = 5
16 ln 2− 1

2γ + C0

C0 = lim
N→∞

1

4π

N∑
m=1

[
|ξ (m)|−2− 2π ln

|ξ (m+1)|
|ξ (m)|

]
. (2.19)

In the latter equationγ is the Euler–Mascheroni constant andξ (m) is a sequence of two-
dimensional vectors such that|n1| + |n2| = m, γ z = {y, ω + ξ}, ξ 6= 0, |ξ (m+1)| > |ξ (m)|
[22].

For the derivation of the Selberg trace formula, one has to consider the contributions
coming from the identity and the non-parabolic elements in0, the normalized Eisenstein–
Maass series, equation (2.13), and allγ -type conjugacy classes, equation (2.18). The final
result we state should be considered as an explicit addition to lemma 1 [22].

Theorem 1.For the special discrete groupSL(2,Z + iZ)/{± Id} and h(r) satisfying the
conditions of lemma 1, we have the Selberg trace formula∑
j

h(rj )−
∑

{γ }0,γ 6=Id,
γ=non-parabolic

∫
k(u(z, γ z)) dµ(z)− 1

4π

∫ ∞
−∞

h(r)
S ′(1+ ir)

S(1+ ir)
dr + h(0)

4
S(1)

= V (F)
∫ ∞

0

r2

2π2
h(r) dr + Cg(0)+ h(0)

4
− 1

4π

∫ ∞
−∞

h(r)ψ(1+ 1
2ir) dr.

(2.20)

The first term on the RHS of (2.20) is the contribution of the identity element, whileV (F)

is the (finite) volume of the fundamental domainF with respect to the measure dµ.

3. The heat kernel and theζ-function

As discussed in the introduction, the determinant of an elliptic differential operator requires
a regularization. It is convenient to introduce the operatorLδ = −1 + δ2 − 1, with δ
such thatδ2 > 1. One of the most used regularization is theζ -function regularization
[20, 24, 21]. By this one has

ln detLδ = −ζ ′ (0|Lδ) (3.1)
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whereζ ′ is the derivative with respect tos of the ζ -function. In the standard cases, the
ζ -function ats = 0 is well defined, and so by means of the latter formula one obtains a
finite result.

We recall that the meromorphic structure of the analytically continuedζ -function, as
well as the ultraviolet divergences of the one-loop effective action, can be related to the
asymptotic properties of the heat-kernel trace. For the rank-1 symmetric spaceH 3/0 the
trace of the operator exp

[−(tLδ)] may be computed by using theorem 1 (equation (2.20))
with the choiceh(r) = exp

[−t (r2+ δ2)
]

(we use units in which the curvatureκ = R/6 of
H 3 is equal to−1). We have

g(u) = e−tδ
2
e−u

2/4t

√
4πt

g(0) = e−tδ
2

√
4πt

h(0) = e−tδ
2
. (3.2)

In this and the following sections we shall consider additive terms of theζ -function
associated with identity and parabolic elements of the group0 only (the heat kernel and
ζ -function analysis for co-compact discrete group0 has been carried out in [2, 12], for
example).

As a result

Tr e−tLδ = e−tδ
2

[
V (F)

(4πt)3/2
+ C

(4πt)1/2
+ 1

4
− 1

4π

∫ ∞
−∞

ψ(1+ 1
2ir)e−tr

2
dr

]
. (3.3)

The asymptotic behaviour of the last integral fort → 0 can be easily evaluated. In fact, by
making an integration by parts, using (see [25])

ln0(z) = z ln z − z − ln

√
z

2π
+ f (z)w (3.4)

with

f (z) = 1

2

∞∑
k=1

k

(k + 1)(k + 2)

∞∑
n=1

1

(n+ z)k+1
(3.5)

and performing elementary integration we have

Tr e−tLδ = e−tδ
2

[
ln t

8
√
πt
+ V (F)

(4πt)3/2
+ C + ln 2+ 1

4γ

(4πt)1/2
− t

π i

∫ ∞
−∞

e−tr
2
f ( 1

2ir) dr

]
. (3.6)

The functionf (z) has an aymptotic expansion for large|z| in terms of the Bernoulli numbers
Bk given by [25]

f (z) ∼
∞∑
k=1

B2k

2k(2k − 1)z2k−1
. (3.7)

The contribution for shortt comes from these asymptotics. Thus we have

Proposition 2.The asymptotic behaviour of the heat kernel fort → 0 reads

Tr e−tLδ ' e−tδ
2

[
ln t

8
√
πt
+
∞∑
n=0

Knt
n−3/2

]
=
∞∑
r=0

(Ar + Pr ln t)t r−3/2 (3.8)

where the firstKn coefficients are given by

K0 = V (F)

(4π)3/2
K1 =

C + ln 2+ 1
4γ√

4π
K2 = 1

6
√
π

(3.9)

and

Ar =
r∑
n=0

(−1)n
Br−nδ2n

n!
P0 = 0 Pr = (−1)r−1 δ2(r−1)

8
√
π(r − 1)!

. (3.10)
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It should be noted that, besides the usual terms one has for the heat kernel in three-
dimensions, there exist terms with logarithmic factors due to the presence of parabolic
elements in0. These terms are absent for the co-compact group0 (compact hyperbolic
manifolds). Furthermore, the contribution of the hyperbolic elements is exponentially small
in t . Thus, the result of proposition 2 still holds true.

Let us analyse the consequences of the presence of logarithmic terms in the latter
expansion. We recall that theζ -function associated with the elliptic operatorLδ is given by

ζ(s|Lδ) = 1

0(s)

∫ ∞
0

dt t s−1 Tr e−tLδ (3.11)

valid for Res > 3
2. In order to obtain the meromorphic structure of the function (3.11), we

split the integration range in the two intervals [0, 1) and [1,∞), in this way obtaining two
integrals. The latter is regular fors → 0, while the behaviour of the former one can be
estimated by using the asymptotics, equation (3.8). Thus we have

Proposition 3.The meromorphic structure of theζ -function reads

ζ(s|Lδ) = 1

0(s)

∞∑
r=0

[
Ar

s + r − 3
2

− Pr

(s + r − 3
2)

2

]
+ J (s)
0(s)

(3.12)

whereJ (s) is an analytic function.

From this, it follows that the analytic continuation ofζ -function is regular ats = 0.
The presence of double poles, caused by the logarithmic terms, must also be noted.

We conclude this section by computing the asymptotic behaviour for very largeδ of the
derivative of theζ -function evaluated at zero. To this end, the asymptotic behaviour for
small t [7] again gives

Proposition 4.

ζ ′(0|Lδ) = V (F)δ3

6π
+ 1

2
δ ln δ − δ

(
C + 1

2
ln 2+ 1

2

)
+O

(
1

δ

)
. (3.13)

4. The functional determinant

In this section, making use of the trace formula, we shall compute the functional determinant
of a Laplace-type operator onH 3/0. We briefly explain the method which is based on
ζ -function regularization and an evaluation by quadratures with an appropriate choice of
the functionh(r) appearing in the trace formula [6, 7, 18]. Theζ -function, for Res > 3

2,
can be rewritten in the form

ζ(s|Lδ) =
∑
σ

ρσ
(
λσ + δ2− 1

)−s =∑
j

(
λj + δ2− 1

)−s + ∫ ∞
0

(
λ+ δ2− 1

)−s
ρλ dλ

(4.1)

where the sum overj runs over the discrete spectrum,λj being the eingenvalues and we put
ρi = 1 here. For the continuous spectrum,ρλ is proportional to the logarithmic derivative
of the S-matrix S(s). One has

ζ ′(s|Lδ) = −
∑
σ

ρσ
(
λσ + δ2− 1

)−s
ln(λσ + δ2− 1). (4.2)

From the latter equation one obtains

d

dδ

(
1

2δ

d

dδ
ζ ′(s|Lδ)

)
= 2δ

∑
σ

ρσ
(
λσ + δ2− 1

)−s−2+O(s). (4.3)
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A standard Tauberian argument and equation (3.8) gives a Weyl estimate for largeσ , namely
(λσ + δ2− 1)−1 ' σ−2/3. As a consequence, in the limits → 0, the RHS of (4.3) is finite.
This works for dimensionsD = 2 as well as forD = 3. In higher dimensions it is necessary
to take further derivatives with respect toδ [7].

On the other hand, we may rewrite equation (2.20) (herer2+1= λ andγ is the identity
or a parabolic element in0) as

G(δ) =
∑
σ

ρσhδ(rσ ) =
∑
j

hδ(λj )− 1

4π

∫ ∞
−∞

hδ(r)
S ′(1+ ir)

S(1+ ir)
dr + hδ(0)

4
S(1). (4.4)

G(δ) denoting the ‘geometrical’ part

G(δ) = V (F)
∫ ∞

0

r2

2π2
hδ(r) dr + Cg(0)+ hδ(0)

4
− 1

4π

∫ ∞
−∞

hδ(r)ψ(1+ 1
2ir) dr. (4.5)

Let us choose the functionhδ as

hδ(r) = 1

r2+ δ2
− 1

r2+ a2
gδ(0) = 1

2δ
− 1

2a
(4.6)

with a a non-vanishing constant. Taking the derivative with respect toδ we have

2δ
∑
σ

ρσ
(
λσ + δ2− 1

)−2 = − d

dδ
G(δ). (4.7)

Making the comparison between equation (4.3) and (4.7), integrating twice in the variable
δ and taking the limits → 0, we finally obtain

ζ ′(0|Lδ) = −2
∫
δG(δ) dδ + c1δ

2+ c2 (4.8)

where the constantsc1 and c2 can be determined from the asymptotics for largeδ. The
primitive related to the geometrical part can be easily computed by making use of the
Selberg trace formula with the choice (4.6). One has

G(δ) = −V (F)
4π

(δ − a)+ C
2

(
1

δ
− 1

a

)
+ 1

4

(
1

δ2
− 1

a2

)

− 1

4

[
ψ(1+ δ/2)

δ
− ψ(1+ a/2)

a

]
. (4.9)

As a consequence

ζ ′(0|Lδ) = V (F)δ3

6π
+ [c1+Q(a)]δ2− Cδ − 1

2
ln δ + ln0(1+ 1

2δ)+ c2 (4.10)

where

Q(a) = 1

4a2
− V (F)a

4π
+ C

2a
− ψ(1+ a/2)

4a
. (4.11)

The inclusion of the contribution related to the hyperbolic elements in (4.10) is almost
straightforward and can be found in [2, 12]. It is additive and reads simply lnZ(1+δ), Z(s)
being the Selberg zeta-function, which may defined by means of its logarithmic derivative;
namely for Res > 1 one has [16, 12]

Z′(s)
Z(s)

=
∑
{P }

∞∑
k=1

χ(P (γ )k)

S3(k; lγ ) exp
(−(s − 1)klγ

)
(4.12)

where {P } is a set of primitive closed geodesics,P(γ ) being the holonomy element by
parallel traslation around theγ ∈ 0 element of the conjugacy class,lγ the corresponding
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geodesic length andS3(k; lγ ) a known function of the conjugacy class. In the largeδ limit,
lnZ(1+ δ) is vanishing and one has

ζ ′(0|Lδ) ' V (F)δ3

6π
+ [c1+Q(a)]δ2+ 1

2
δ ln δ − δ

(
C + 1

2
ln 2+ 1

2

)
+ 1

2
lnπ + c2

(4.13)

which agrees with (3.13) if

c1 = −Q(a) c2 = − 1
2 lnπ. (4.14)

Summarizing we have proved the following theorem.

Theorem 2.One has the identity

detLδ =
√
πδ

0(1+ 1
2δ)

exp

(
−V (F)δ

3

6π
+ Cδ

)
Z(1+ δ). (4.15)

5. Conclusions

In this paper we have computed the functional determinant of a Laplace-like operator on a
non-compact three-dimensional hyperbolic manifold with finite volume fundamental domain
by the method of quadratures. In addition, the contributions to the heat kernel and theζ -
function associated with the identity and parabolic elements of the isometry group have
been analysed. The constant appearing in the quadrature process has been determined by
means of the asymptotic behaviour of the functional determinant, which may be achived
again making use of the trace formula for the heat kernel. This method is particular useful
in the evaluation of the functional determinants, because it allows one to avoid the problem
of finding the analytical continuation of the zeta-function, which may present computational
difficulties. On the other hand, the method requires the existence of a trace formula and its
validity can be extended to more general cases (see, for example, [26, 27, 28]).
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